1. Speed: Apache Spark can process data up to 100x faster than Hadoop MapReduce. This is because it runs in-memory computations and uses a directed acyclic graph (DAG) for data processing. For example, a Spark job can process a terabyte of data in just a few minutes, as compared to Hadoop MapReduce which may take hours.
2. Scalability: Apache Spark can scale up to thousands of nodes and process petabytes of data. It is highly fault tolerant and can recover quickly from worker failures. For example, a Spark cluster can be easily scaled up to process a larger dataset by simply adding more nodes to the cluster.
3. Ease of Use: Apache Spark has a simpler programming model than Hadoop MapReduce. It supports multiple programming languages such as Java, Python, and Scala, which makes it easier to develop applications. For example, a Spark application can be written in Java and then deployed on a cluster for execution.
4. Real-Time Processing: Apache Spark supports real-time processing of data, which makes it suitable for applications that require low-latency responses. For example, a Spark streaming application can process data from a Kafka topic and generate real-time insights.