1. Decision Tree Algorithm: This algorithm is used for supervised learning and uses a tree-like structure to classify data. For example, it can be used to classify customers based on their spending habits.

2. Support Vector Machines (SVMs): This algorithm is used for supervised learning and works by mapping data points to a high-dimensional space and then finding the best hyperplane that separates the data. For example, it can be used to classify images of animals.

3. Neural Networks: This algorithm is used for supervised learning and works by creating a network of connected nodes that can be trained to recognize patterns in data. For example, it can be used to recognize handwritten digits.

4. Clustering Algorithm: This algorithm is used for unsupervised learning and works by grouping data points into clusters based on similarity. For example, it can be used to group customers based on their purchase history.

5. Genetic Algorithms: This algorithm is used for optimization and works by creating a population of solutions and then selecting the best ones through a process of selection, crossover, and mutation. For example, it can be used to optimize a portfolio of stocks.

Leave a Reply

Your email address will not be published. Required fields are marked *